

PhD THESIS

WIDE BAND ARRAYS AT SUB-MILLIMETER BANDS

<u>Laboratory</u>

- Institut d'Électronique et de Télécommunications de Rennes (IETR), UMR CNRS 6164. Rennes,
 France. www.ietr.fr
 - Département 'Antennes et Dispositifs Hyperfréquences' Equipe BEAMS 'BEam Antennas up to Mm and Sub-mm waves'.
- <u>Doctoral school</u>: MathSTIC (<u>https://ed-mathstic.u-bretagneloire.fr/</u>)

• Keywords

Connected arrays, wideband antennas.

• State of the art

Connected arrays of slots and dipoles have become the technology of choice for compact, low profile, wideband and wide scanning antennas [1], [2]. The principle of operation consists in creating a continuous current distribution over the radiating aperture, avoiding resonances and reducing impedance variations at the array elements over very wide frequency and scan ranges. Such a concept has taken also different forms as Planar Ultra-wideband Modular Array (PUMA) [3], connected arrays of slots or dipoles [4] backed by a ground plane for unidirectional radiation and Continuous Transverse Stub (CTS) arrays [5]. The antenna stack-up may require several metallic layers (>4) [3] or separated circuits mechanically assembled [6]. These arrays can achieve record performance, with 5:1 impedance bandwidth with a scan range up to ±70° [6]. The band and visible range are improved by replacing the backing reflector with a stack-up of frequency selective surfaces (FSS) [7] or by loading the radiating aperture with Wide Angle Impedance Matching (WAIM) layers [8]. Anisotropic artificial dielectrics [9] have been also proposed to ease the fabrication in Printed Circuit Board (PCB) and avoid mechanical assembling but require more than 10 metallic layers. Recently, [10] has presented for the first time a 3×3 connected array of dipoles covering all allocated 5G bands in USA from 27.5 up to 72 GHz with a field of view of ±45°. Its limited scan range is due to packaging issues, confirming that fabrication and system architecture are key for such arrays. IETR has recently proposed CTS arrays links in the V- [11] and E-bands [12]. In D-band, a connected arrays in polystrata technology has been recently proposed with 4096 radiating elements [13].

• Main goals

The PhD project addresses three major goals:

- ⇒ To propose a Green's function approach for the analysis of connected arrays at sub-millimetre bands taking into account technology constraints for the fabrication of such arrays. Losses, active reflection coefficient and scanning capabilities should be assessed.
- ⇒ To investigate the scanning capability and suitability of such antennas for next multi-band radiometers in the sub-millimetre bands.
- ⇒ To prototype and validate experimentally the numerical results with advanced technology as for example diffusion bounding of thin laminate plates and silicon micro machining.

Location and supervision

The PhD project will be held at the IETR, Rennes in the framework of a collaboration with the French Space Agency (CNES). The main supervisor of the PhD student will be Mauro ETTORRE IETR, CRCN CNRS

(<u>mauro.ettorre@univ-rennes1.fr</u>), David GONZALEZ-OVEJERO IETR, CRCN CNRS and Ronan SAULEAU, IETR, Professor. The student will be co-advised by Baptiste PALACIN from CNES. During the PhD program, the candidate may spend some time in the premises of CNES.

• <u>Candidate profile</u>

The PhD candidate should hold a MSc degree M2R in electrical engineering, physics or an equivalent title recognized by the doctoral school MATISSE. In particular, he should master electromagnetic theory, physics, mathematics, and circuit analysis. A good level of spoken and written English is required.

Application

Interested candidate should send a detailed CV and motivation letter by email to Mauro ETTORRE (mauro.ettorre@univ-rennes1.fr)

• Examples of references

- [1] L. Shi, et al., "High-Efficiency and Wideband Aperiodic Array of Uniformly-Excited Slotted Waveguide Antennas, Designed through Compressive Sensing," IEEE TAP, 2019.
- [2] L. Shi, et al., "High-Efficiency and Wideband Aperiodic Array of Uniformly-Excited Slotted Waveguide Antennas, Designed through Compressive Sensing," IEEE TAP, 2019.
- [3] S.S. Holland and M. N. Vouvakis, "The Planar Ultra-wideband Modular Antenna (PUMA) Array," IEEE TAP, Jan. 2012.
- [4] D. Cavallo, et al., "Connected-slot array with artificial dielectrics: a 6 to 15 GHz dual-pol wide-scan prototype," IEEE TAP, Jun. 2018.
- [5] W. W. Milroy, "The continuous transverse stub (CTS) array: basic theory, experiment, and application," in Proc. APS., Sep. 1991.
- [6] E. Yetisir, et al., "Ultra wideband array with 70° scanning using FSS superstrate," IEEE TAP, Oct. 2016.
- [7] M. Pasian, S. Monni, A. Neto, M. Ettorre, and G. Gerini, "Frequency selective surfaces for extended bandwidth backing reflector functions," IEEE TAP, Jan. 2010.
- [8] C. Yepes, et al., "Angularly stable frequency selective surface combined with a wide-scan phased array," IEEE TAP, Feb. 2018.
- [9] W. H. Syed, et al., "Wideband, wide-scan planar array of connected slots loaded with artificial dielectric superstrates," IEEE TAP, Feb. 2016.
- [10] M.H. Novak, et al., "Ultra-wideband phased array for milli-meter-wave ISM and 5G Bands, realized in PCB," IEEE TAP, 2018.
- [11]F. Foglia Manzillo, M. Smierzchalski, L. Le Coq, M. Ettorre, et. al, "A wide-angle scanning switched-beam antenna system in LTCC technology with high beam crossing levels for V-band communications," IEEE TAP, Jan. 2019.
- [12] T. Potelon, M. Ettorre, L. Le Coq, T. Bateman, J. Francey, and R. Sauleau, "Reconfigurable CTS antenna fully integrated in PCB technology for 5G backhaul applications," forthcoming in IEEE TAP, 2019.
- [13]J. W. Jordan et al., "Monolithically fabricated 4096-element, PolyStrata broadband D-band array demonstrator," 2019 IEEE MTT-S IMS.